
A Look In the Mirror: Attacks on Package Managers

Justin Cappos Justin Samuel Scott Baker John H. Hartman
Department of Computer Science, University of Arizona

Tucson, AZ 85721, U.S.A.
{justin, jsamuel, bakers, jhh}@cs.arizona.edu

ABSTRACT
This work studies the security of ten popular package man-
agers. These package managers use different security mech-
anisms that provide varying levels of usability and resilience
to attack. We find that, despite their existing security mech-
anisms, all of these package managers have vulnerabilities
that can be exploited by a man-in-the-middle or a malicious
mirror. While all current package managers suffer from vul-
nerabilities, their security is also positively or negatively im-
pacted by the distribution’s security practices. Weaknesses
in package managers are more easily exploited when distri-
butions use third-party mirrors as official mirrors. We were
successful in using false credentials to obtain an official mir-
ror on all five of the distributions we attempted. We also
found that some security mechanisms that control where a
client obtains metadata and packages from may actually de-
crease security. We analyze current package managers to
show that by exploiting vulnerabilities, an attacker with a
mirror can compromise or crash hundreds to thousands of
clients weekly. The problems we disclose are now being cor-
rected by many different package manager maintainers.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software; C.2.0
[Computer-Communication Networks]: General—Se-
curity and protection; K.4.1 [Social Issues]: Abuse and
Crime Involving Computers

General Terms
Security

Keywords
Package Management, Mirrors, Replay Attack

1. INTRODUCTION
Package managers are a popular way to distribute software

(bundled into archives called packages) for modern operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

systems [1, 2, 3, 21, 22, 25, 26, 28, 31, 32]. Package managers
provide a privileged, central mechanism for the management
of software on a computer system. As packages are installed
by the superuser (root), their security is essential to the
overall security of the computer.

This paper evaluates the security of the eight most popu-
lar [9, 19] package managers in use on Linux: APT [1], APT-
RPM [2], Pacman [3], Portage [21], Slaktool [25], urpmi [28],
YaST [31], and YUM [32]. Also examined is the popular
package manager for BSD systems called ports [22] and a
popular package manager in the research community called
Stork [26]. These package managers use one of four differ-
ent security models: no security, cryptographic signatures
embedded within packages, signatures on detached package
metadata, or signatures on the root metadata (a file that
contains the secure hashes of the package metadata).

This work demonstrates that there is an ordering to the
amount of security provided by the different package man-
ager security models. This order is preserved even as other
security weaknesses in the package managers are corrected.
Having no signatures allows the most egregious attacks, fol-
lowed by having only package signatures, having signatures
on detached package metadata, and finally having signa-
tures on the root metadata, which provides the most secu-
rity. However, there are usability concerns with different
signature mechanisms, most notably the ability to verify a
stand-alone package (a package obtained from a source other
than the main repository). Signatures on root metadata do
not provide a convenient way to verify stand-alone packages
and so the user is likely to install such packages without us-
ing security checks. In contrast, package managers that use
signatures on detached package metadata or signatures on
packages can verify stand-alone packages.

Because of the usability strengths and weaknesses of dif-
ferent techniques for providing security, this work recom-
mends a layered approach created by combining two tech-
niques: signatures on the root metadata and either signa-
tures on packages or package metadata. This technique pro-
vides the security strengths and the usability strengths of
both types of signatures with an overhead of between 2-5%.
The layered approach has been added to the Stork package
manager and is now in use by thousands of clients around
the world.

While we find that vulnerabilities in package managers
do exist, vulnerabilities are not always exploitable in the
real world. We examine this by looking at the security of
popular distributions. We find that it is trivial for an at-
tacker to control an official package mirror for a popular

distribution (such as Ubuntu, Debian, Fedora, CentOS, and
openSUSE) and therefore to be in the position to launch at-
tacks on clients. To mitigate this threat, many distributions
use mechanisms to distribute requests to multiple mirrors
or provide certain information from a trusted source. We
show that some of these mechanisms actually decrease the
security of users by making it easier to target attacks.

2. BACKGROUND

2.1 Package Formats
Packages consist of an archive containing files and, in most

cases, additional embedded package metadata. For a given
package, the embedded package metadata contains informa-
tion about any other packages that must be installed in or-
der for it to operate (the dependencies), functionality the
package possesses (what the package provides), and various
other information about the package itself. The most popu-
lar package format, RPM [23], has space for one signature.
Other popular package formats have no standard field for
signatures, although in some cases extensions exist to sup-
port signatures [8, 11].

2.2 Package Managers
Clients use a package manager to install packages on their

system. A package manager gathers information about pack-
ages available on package repositories. Almost all pack-
age managers automatically download requested packages as
well as any additional packages that are needed to correctly
install the software. This process is called dependency res-
olution. For example, a requested package foo may depend
on libc and bar. If libc is already installed, then libc is
a dependency that has been resolved (no package must be
installed to satisfy the dependency). If there is no installed
package that provides bar, then bar is an unresolved depen-
dency and a package that provides bar must be installed
before foo may be installed. The package manager may be
able to locate a package that provides bar on a repository.

The packages that are chosen to fulfill dependencies may
have unresolved dependencies of their own. Packages are
continually added to the list of packages to be installed until
either the package manager cannot resolve a dependency
(and produces an error) or all dependencies are resolved.

2.3 Repository
A package repository is usually an HTTP or FTP server

from which clients can obtain packages and package meta-
data. The package metadata is usually just a copy of the em-
bedded package metadata for all packages on the repository.
Package managers download the package metadata from a
repository so that they know which packages are available
from that repository. This also provides the package man-
ager with dependency information needed to perform de-
pendency resolution. To facilitate convenient downloading
of package metadata, most repositories store all of the pack-
age metadata in a small number of compressed files.

In addition to the package metadata, almost all reposito-
ries have a root metadata file. The name and location of the
root metadata file varies for different repository formats, but
the contents are similar. The root metadata provides the lo-
cation and secure hashes of the files that contain the package
metadata.

Package
signature (optional)

foo−2.0.rpm
A Package

packagemetadata1

c302df...f8hash:packagemetadata1
packagemetadata2 hash: 192ee0...31

Root Metadata signature (optional)

Package Metadata
signature (optional)

size:’56242’

...
hash:’74b5a1...c3’

name:’foo−2.0.rpm’

Metadata

PackageRoot Metadata

A Package’s Metadata

embedded package
metadata

package contents

Figure 1: Repository Layout. The root metadata,
package metadata, and packages may all optionally
have signatures depending on the support of the
package manager. Arrows point from a secure hash
to the file it references.

Figure 1 shows the layout of a typical repository. A pack-
age manager downloads the root metadata and uses that
to locate the files containing the package metadata. The
package manager then downloads the package metadata.
The package metadata is used to determine package avail-
ability as well as for dependency resolution. Packages are
then downloaded and installed. The root metadata, pack-
age metadata, and packages may be signed depending on
the security model of the package manager.

2.4 Mirror
It is common for a distribution to have more than one

server from which users can download packages and package
metadata. There is usually a main repository for a distribu-
tion whose contents are copied by many separate mirrors.
A mirror typically contains exactly the same content as the
main repository and is updated via rsync or a similar tool.
A mirror differs from a main repository in that a mirror is
not intended to have packages directly added to it or re-
moved from it by its administrators. Packages are added or
removed only on the main repository and the mirrors later
obtain the changes when copying the main repository.

A mirror can be public (available for anyone to use) or
private (restricted to a specific organization). A mirror may
also be endorsed by a distribution for public use, typically
when that the distribution is in contact with the mirror
maintainers. This type of mirror is called an official mirror
(the terminology used outside of this document varies by
the distribution). Official mirrors are by definition public
because the distribution is endorsing their use to the public.

It should be noted that some distributions do not use of-
ficial mirrors hosted by outside organizations. One example
is tiny distributions that can support all of their clients by
a small number of repositories that the distribution directly
controls. Another example is a distribution that requires
users to pay. These costs often are used to support a set of
internally maintained mirrors for the distribution. Alterna-
tively, a distribution may allow or require each organization
using the distribution to set up their own private mirrors for
the organization’s own use.

However, official mirrors hosted by outside organizations
are the predominant mechanism for software distribution
with all but two popular distributions [9, 19] relying on offi-

cial mirrors. Official mirrors are essential for most distribu-
tions to reduce cost and management overhead.

3. THREAT MODEL
The threat model used in this paper involves an attacker

that can respond to requests made by a package manager.
This can be a man-in-the-middle, an attacker that has tricked
a client into contacting the wrong server (e.g. through DNS
cache poisoning), or an attacker who has gained control of
an official mirror for a distribution. The threat model is as
follows:

• The attacker can serve the client arbitrary files.

• The attacker does not know what package the client
will request a priori.

• The attacker does not have a key trusted to sign pack-
ages, package metadata, or the root metadata. — Note
that mirrors do not usually possess the private key
used to sign files, they only copy previously signed files
from the main repository.

• The attacker has access to outdated packages, out-
dated package metadata, and outdated root metadata
files. — There are many outdated mirrors on the In-
ternet where an attacker can obtain these files.

• The attacker is aware of vulnerabilities in some out-
dated packages and is able to exploit those vulnera-
bilities. — This is possible by looking at change logs
and updates to software source files or downloading an
exploit toolkit [18].

• The attacker does not know of a vulnerability in the
latest version of any package. — Zero-day vulnerabil-
ities are unlikely to be known by many attackers.

• If a package manager supports signatures, signatures
are used. — If a client or distribution chooses not to
use signatures supported by their package manager,
they are as vulnerable as if they used a package man-
ager that does not support signatures.

• Expiration times in the root metadata are used, if sup-
ported, and current (un-expired) root metadata does
not contain any vulnerable versions of packages — The
root metadata is a single, small file so it is feasible for
the main repository to sign it relatively frequently with
short expiration times.

3.1 Attacks
Given this threat model, there are several attacks that

may be used on a client. The impact of these attacks varies,
but all allow the attacker to either crash or control the
client’s computer (possibly via exploiting a package with a
known vulnerability). Each of the following attacks is effec-
tive on at least some of the package managers we studied:

• Arbitrary Package The attacker provides a package
they created in place of a package the user wants to
install.

• Replay Attack An attacker replays older versions of
correctly signed packages or metadata, causing clients
to install an old package with security vulnerabilities

the attacker can exploit. The attacker can then com-
promise the client by exploiting the vulnerable pack-
age. Note that most package managers will not down-
grade an existing package, so a replay attack only works
when the package manager installs a new package, not
when it updates an existing package.

• Freeze Attack Similar to a replay attack, a freeze at-
tack works by providing metadata that is not current.
However, in a freeze attack, the attacker freezes the
information a client sees at the current point in time
to prevent the client from seeing updates, rather than
providing the client older versions than the client has
already seen. As with replay attacks, the attacker’s
goal is ultimately to compromise a client who has vul-
nerable versions of packages installed. A freeze attack
may be used to prevent updates in addition to having
an installed package be out of date.

• Extraneous Dependencies The attacker rewrites the
package metadata to have additional packages installed
alongside a package the user intends to install. For
example, the attacker provides metadata that incor-
rectly states that package foo depends on bar. This
will cause bar to be installed when it is not desired or
needed. If bar has a security vulnerability, this allows
an attacker to compromise the client’s system.

• Endless Data This attack is performed by returning
an endless stream of data in response to any download
request. This may cause the package manager to fill up
the disk or memory on the client and crash the client’s
system.

4. SECURITY OF PACKAGE MANAGERS
The security of a package manager varies depending on

how signatures are used to protect data. This section ex-
plores the security strengths and weakness of signatures on
different data along with implementation pitfalls observed
in package managers (and how to fix them). This section
then classifies the security of different signatures into a list
ordered by increasing security.

The discussion groups package managers with similar se-
curity characteristics together. The first group of package
managers do not use signatures (Section 4.1). The second
group of package managers use signatures on packages but
do not use signatures on package metadata or root metadata
(Section 4.2). The third group of package managers use sig-
natures on package metadata but not on the root metadata
(Section 4.3). The final group of package managers use sig-
natures on the root metadata (Section 4.4).

4.1 Package Managers Without Security
There are three popular package managers that do not

provide security: Pacman, ports1, and Slaktool. These pack-
age managers do not sign packages, package metadata, or the
root metadata file. As a result, any attacker that controls
a mirror can trivially launch an arbitrary package attack by
responding to client requests with malicious software.

1A version of ports used by NetBSD did support package
signatures at one time [7], but this has been obsoleted and
is not maintained or used.

4.2 Package Signatures
YUM and urpmi rely solely on signatures embedded in

packages to provide security. There is no protection of pack-
age metadata or the root metadata. As a result, an at-
tacker can launch replay or freeze attacks and have clients
install vulnerable packages. An attacker can choose to in-
clude any vulnerable versions of signed packages they wish
on the repository.

However, neither YUM nor urpmi verify that the package
metadata they initially received for dependency resolution
matches the embedded package metadata of subsequently
downloaded packages. This allows an attacker to forge pack-
age metadata to launch an extraneous dependencies attack.
This means that if there exists a package that the attacker
knows how to exploit and which the user does not have in-
stalled, the attacker can cause it to be installed whenever
any other package is installed by the user. The result is that
an attacker can compromise essentially every client that in-
stalls or updates a package.

Both YUM and urpmi are also vulnerable to endless data
attacks. For example, when YUM is given a repomd.xml

file of unlimited size, it exits without printing an error af-
ter the filesystem is full — leaving the huge file on disk.
Since no information is logged or printed about the error,
this makes discovering the problem complicated (especially
if YUM runs via auto-update).

Fixing the package managers Even without chang-
ing the signature methods, it is possible to modify these
package managers to prevent the extraneous dependencies
attack. Doing so requires verifying that downloaded pack-
age metadata is the same as the embedded metadata in any
downloaded package. Furthermore, endless data attacks can
be prevented by capping the size of downloaded data. How-
ever, these changes are not adequate to protect against re-
play or freeze attacks. Given the large number of packages
that need to be re-signed to prevent replay or freeze attacks,
we believe that adding root metadata signing is the most
practical way to address this issue.

4.3 Package Metadata Signatures
The Portage and Stork package managers use signatures

on package metadata; however, they do so in different ways.
Each package in Portage has a separate, signed package
metadata file for each version of the package. The package
metadata contains the secure hash of the package (possibly
along with hashes of related files such as patches). In con-
trast, Stork users create a single file that contains a times-
tamp and the secure hash of the package metadata for all of
the packages that the user trusts. Users can also delegate
trust to other users and all users typically delegate trust to
a single “distribution” user. The analysis of Stork therefore
focuses on the security of the packages trusted by the dis-
tribution user because the security of the distribution user
affects all clients.

These package managers are not vulnerable to extrane-
ous dependencies attacks because the signatures protect the
package metadata. However, resistance to metadata tam-
pering does not imply that the package manager is resistant
to all attacks. Both package managers are vulnerable to
endless data attacks.

In both Portage and Stork, an attacker can launch freeze
attacks. In Portage, since each package has a different file
for metadata signatures, an attacker can choose to have any

combination of packages (such as those that include only
older versions with known vulnerabilities) available on the
mirror. Portage is vulnerable to replay attacks in the same
way as freeze attacks.

In Stork, all of the package metadata hashes are in the
same signed file. This prevents an attacker from choosing
package metadata that existed on the repository at different
times. Stork checks that timestamps on files are increasing
to prevent replay attacks but does not prevent freeze attacks.

Fixing the package managers It is possible to add re-
play attack protection to Portage through timestamp check-
ing and to add protection against endless data attacks to
both Portage and Stork. However, both package managers
will still be vulnerable to freeze attacks.

4.4 Root Metadata Signatures
The package managers APT, APT-RPM, and YaST use

signatures on the root metadata. All three of these package
managers optionally support package signatures as well, but
this functionality is not widely used in practice.

Package metadata is stored in compressed files and the se-
cure hashes of those files are stored in the root metadata file.
As the root metadata is protected by a signature, the pack-
age metadata is protected from tampering which prevents
extraneous dependencies attacks. In addition, the signature
on the root metadata prevents a mirror from hosting ver-
sions of packages that were on the main repository during
different time periods. The attacker must choose a time pe-
riod of the main repository to copy and provide exactly those
files when launching a replay attack. Unfortunately, none of
these package managers check the order of timestamps to
prevent replay attacks or have any mechanisms to prevent
freeze attacks or endless data attacks.

Fixing the package managers It is easy for these
package managers to protect against endless data attacks
as well as to prevent replay attacks. Replay attacks can
be prevented by adding a timestamp to the root metadata
and checking that any newly downloaded root metadata is
not older than the version the client last obtained. In fact,
all three package managers have a timestamp available and
merely need to add this check.

To mitigate the effectiveness of freeze attacks, package
managers could add an expiration time to the root metadata.
Clients would refuse to use a root metadata file if the current
time is greater than the expiration time. Since the root
metadata is a single, small file, it is feasible to re-sign this
file often and require every mirror to be frequently updated
(most distributions already require their public mirrors to
update at least once a day).

4.5 Classification
The security mechanisms and vulnerabilities of the pack-

age managers are summarized in Figure 2. All of the pack-
age managers studied are vulnerable to endless data attacks
as well as freeze attacks. Different package managers have
varying resistance to other attacks such as replay attacks.
Depending on the package manager’s security mechanisms,
the result can be any of the following, where those listed first
also imply those listed after: arbitrary packages created by
the attacker are installed, any vulnerable package can be
installed alongside non-vulnerable packages a client installs
using an extraneous dependencies attack, mismatched out-
dated packages are installed (in that they existed on the

Name Signature Package Installation Metadata Abuse

Pacman nothing arbitrary arbitrary
ports nothing arbitrary arbitrary
Slaktool nothing arbitrary arbitrary
YUM (1) alongside arbitrary
urpmi (1) alongside arbitrary
Portage (2)* mismatch replay / freeze
Stork (1)*, (2) snapshot freeze
APT (1)*, (3) snapshot replay / freeze
YaST (1)*, (3) snapshot replay / freeze
APT-RPM (1)*, (3)* snapshot replay / freeze

Figure 2: Package managers, their protection mech-
anisms and vulnerabilities. The protection mecha-
nisms are numbered (1) packages, (2) package meta-
data, (3) root metadata. ’*’ indicates that support
exists but is not in common use.

Signatures Best Case Common Case
Protecting Package Metadata

Abuse
Package Metadata

Abuse

No Security arbitrary arbitrary arbitrary arbitrary
Package mismatch replay /

freeze
alongside arbitrary

Package Meta-
data

mismatch /
snapshot

freeze mismatch replay /
freeze

Root Meta-
data

current none snapshot replay /
freeze

Figure 3: Classification of package manager protec-
tion schemes. This demonstrates both the security
that is possible to achieve using a scheme as well as
what is commonly provided by existing implemen-
tations.

main repository at different times), or installed packages will
come from a collection of outdated packages that all existed
at the same time on the main repository (i.e. in the same
snapshot).

Based on the observation and analysis of the security in
existing package managers, it is possible to similarly classify
the security mechanisms. As Figure 3 shows, one can obtain
an ordering of the security of the mechanisms. Clearly, hav-
ing no signatures allows the most attacks and is the most
vulnerable. Signatures on packages provide a definite im-
provement over no signatures, but gives the attacker the
ability to manipulate metadata arbitrarily and provides at-
tackers the ability to populate a mirror with packages of mis-
matched versions, or, if package metadata isn’t verified using
the signed packages, the ability to cause vulnerable pack-
ages to be installed alongside any non-vulnerable packages.
Signatures on package metadata prevent the attacker from
doing more than replaying or freezing the package metadata,
but if the signatures are in separate files, the attacker can
still mismatch versions of packages. By preventing replay
and freeze attacks in package managers that sign the root
metadata, a package manager will only install current pack-
ages and is immune to metadata tampering.

5. ADDITIONAL USABILITY NEEDS
This section focuses on additional usability requirements

users have for package management. Most importantly, the
use case where a user has an uninstalled package on their
computer they need to verify.

The standard use case of the package managers and their
security mechanisms is where a user needs to securely install

software from a repository or mirror. However, it is not
uncommon for a user to have a stand-alone package that was
created by a party they trust and that they need to verify
is free from tampering. Stand-alone packages are packages
that are not obtained through the package manager’s normal
channels at install time. Stand-alone packages may have
been obtained manually from unofficial sources or may even
be packages a user has created. Another source provides an
extended discussion [29] describing why stand-alone package
verification is an important and desirable feature.

The signing of only root metadata does not allow any
practical way to verify stand-alone packages. Package man-
agers that use signed root metadata could be modified to
keep copies of all metadata obtained from the repository
for future verification of stand-alone packages, but this only
helps for packages a user manually downloads from the same
repository that they access through their package manager.
This also fails to satisfy one of the primary reasons given
for being able to verify stand-alone package signatures: ver-
ifying signatures for files when they are only available for
manual download and installation, not through a repository.

Package managers that sign package metadata tend to be
more able to meet the needs of stand-alone package verifi-
cation than the package managers who only sign root meta-
data. However, the way in which package metadata is stored
has a major impact on usability in this case. Similarly with
package managers that sign only root metadata, package
managers would need to store old package metadata and this
would only be of use for verifying stand-alone packages that
came from a repository the user normally uses. In other
cases, the user would need to be sure to always keep the
signed package metadata with the package for verification
purposes. This is far from an ideal option.

Signatures embedded in packages are thus the most practi-
cal option and provide the greatest ease of use when stand-
alone packages must be verified. All that a user needs in
order to verify a package is the package itself. A drawback
with having signatures in the package is that signatures are
constrained by the limits of the package format so multiple
signatures may not be supported.

Using signatures embedded in packages for stand-alone
package verification does have complications, though. No-
tably, users must have the requisite public keys available in
order to verify package signatures. They must also ensure on
their own that packages they are installing are not outdated
or have vulnerabilities. However, there are many scenarios
where a user can use embedded package signatures in a way
that increases security in their specific situation.

6. DEPLOYMENT EXPERIENCE
To gain more experience with what security mechanisms

work well in practice, we modified the package manager
Stork and added root metadata signing. We added an expi-
ration time to the root metadata to prevent freeze attacks.
Since Stork already supported both package signatures and
package metadata signatures, this allowed us to experiment
with all types of signatures in a single package manager.

The changes to Stork for root metadata signing were tested
and beta-deployed and finally incorporated into the produc-
tion release. Interestingly, Stork differed from all other se-
cure package managers in that there was no key already
trusted by clients to validate communication from the repos-
itory. As the only signed files in Stork were the package

metadata files signed by individual users, there had never
been a need for the repository to have its own key that the
clients trusted. This required distributing a repository key
to clients in order for them to make use of the new root
metadata signatures. The key was included with the ini-
tial release of the updated version of Stork. This initial
key distribution was secure because the majority of users,
through their trusted packages files, delegate trust to the
Stork team to provide them updated Stork packages. Stork’s
design meant that users would not be using this key for
trusting packages, but rather only verifying metadata files
downloaded from the repository.

The resulting changes were transparent to the users both
in terms of performance and usability. The overhead of using
package metadata signing along with root metadata signing
was measured and found to be negligible (between 2-5%).
Ultimately, there were few comments about the addition of
root metadata signatures since the existing security mech-
anism (package metadata signatures) was retained without
modification. Though transparent to the users, they gained
increased security through the addition of root metadata
signatures.

We examined packages on the Stork repository to find that
user-uploaded packages did not include package signatures,
indicating that researchers were not using the optional pack-
age signature feature of Stork. While far from conclusive,
this implies that package metadata signatures and package
signatures are redundant. We reason that when multiple sig-
nature mechanisms are provided, either package metadata
signatures or package signatures are sufficient for usability
purposes, but it is unnecessary to support both.

To conclude, since no one scheme works well from both a
security and a usability standpoint, we propose that pack-
age managers should use multiple security mechanisms. It is
clear that root metadata signatures should be included be-
cause of their security benefits. It also seems advantageous
to have either package metadata signing or package signa-
tures for usability. By combining root metadata signatures
with either signed package metadata or signed packages, a
package manager can obtain a high degree of security and
excellent usability without significant performance impact.

7. PACKAGE MANAGERS IN PRACTICE
This section examines additional functionality that is pro-

vided by some of the most popular distributions (Ubuntu,
Debian, Red Hat Enterprise Linux, Fedora, CentOS, open-
SUSE, and SUSE Enterprise Linux) that impacts the secu-
rity of package managers in practice. It should be noted that
we did a cursory examination of other popular distributions
(Gentoo, Mandriva, LinuxMint, Sabayon Linux, Slackware,
KNOPPIX, Arch Linux, and MEPIS Linux) and did not find
any additional security practices that significantly altered
the security over that provided by their package manager.
We did not survey any smaller distributions, but we strongly
suspect that the majority of them are at least as vulnerable
as their package manager is by default.

In this section, we first examine the feasibility of an at-
tacker obtaining an official mirror for a distribution. We
examine this by setting up mirrors for five popular distri-
butions that have official mirrors run by outside parties
(Ubuntu, Debian, Fedora, CentOS, and openSUSE). We
then examine the security pitfalls in using a security repos-
itory for package updates and a set of untrusted mirrors for

the core distribution. Next, we examine how the mecha-
nisms by which requests are distributed to different mirrors
impacts security. We then examine the use of HTTPS to
try and determine its effect and applicability. The section
concludes with a look at the discussed distributions and a
comparison of their security characteristics.

7.1 Obtaining a Mirror
To evaluate the feasibility of controlling mirrors of popular

distributions, we set up public mirrors for the CentOS, De-
bian, Fedora, openSUSE, and Ubuntu distributions. A fic-
titious company (Lockdown Hosting) with its own domain,
website, and fictitious administrator (Jeremy Martin) were
used as the organization maintaining the mirrors. A server
with a monthly bandwidth quota of 1500 GB was leased for
$200 per month through The Planet (www.theplanet.com).

Setting up a public mirror for each distribution involved
acquiring the packages and metadata from an existing mir-
ror and then notifying the distribution maintainers that the
mirror was online and available for public usage. The distri-
butions varied in terms of the degree of automation in the
public mirror application and approval process as well as
whether newly listed mirrors have traffic immediately and
automatically directed to them. In all cases, the distribu-
tions accepted our mirror and added it to the official mirror
list for use by outside users. We saw traffic on our mirrors
from a variety of clients, including military and government
computers. More detail about our mirrors can be found in
a tech report [5].

7.2 Security Repository
Debian and Ubuntu both use an official repository that

serves security updates (packages that fix vulnerabilities).
This prevents a mirror from launching a replay attack be-
cause the package manager will use the latest version of a
package which will be available from the security reposi-
tory. However, this protection does not extend to a man-
in-the-middle attacker since the repositories do not support
HTTPS.

Both Debian and Ubuntu use several mirrors beside the
security repository. In the case where the security repository
is down, an attacker can use a mirror to serve outdated
content that was originally from the security repository to
perform a replay attack. In addition, using multiple mirrors
makes Ubuntu and Debian users much more vulnerable to
endless data attacks.

7.3 Mirror Selection
In many distributions, not every source of data is created

equal. For example, openSUSE distributes all of the meta-
data from a central source and only outsources package re-
quests to mirrors. In this section we examine the impact
that these practices have on the security of different distri-
butions.

OpenSUSE uses a download redirector that sends some
requests to mirrors. However, the download redirector serves
package metadata and root metadata directly. This means
that the client gets the metadata from a trusted source (not a
mirror). While this doesn’t protect against all of the attacks
a client may face (such as endless data attacks by mirrors
or replay attacks by a man-in-the-middle attacker), it does
make it much more difficult to launch an attack.

On CentOS, clients contact a central service which redi-

rects the client’s requests to official mirrors. Requests for
all types of content (packages, package metadata, and root
metadata) are directed to mirrors that are not controlled by
CentOS. The specific mirror a client is redirected to may be
different for each file requested. The result is that an aver-
age CentOS client contacts many more mirrors than would
normally be the case. This makes it much easier for an at-
tacker to conduct an endless data attack on many clients
but complicates replay or freeze attacks because the same
repository may not be contacted for packages and metadata.
However, an attacker can still effectively launch an extrane-
ous dependencies attack.

On Fedora, by default clients contact a central service
called MirrorManager that is very similar to the CentOS
service. However, MirrorManager allows a mirror adminis-
trators to specify that clients in an IP address range should
use only their mirror. This allows easy targeting of attacks
(to a specific country or organization) and reduces the num-
ber of other parties who will consume resources on the mir-
ror. Note that the mirror need not have an IP address in
the IP address range that it targets.

Online mirror redirectors handle failures differently than
a security repository. If a mirror redirector fails, the clients
will stop trying to communicate and fail (as opposed to
“failing-open” by skipping the failed repository).

Many distributions including Gentoo, KNOPPIX, Arch
Linux, Debian, and Ubuntu also have mirror selection tools
that find a nearby mirror. These tools do not improve the
security of users since they are only used to select a sin-
gle mirror to download all content from. In fact, it should
be noted that popular mirror selection tools for Debian and
Ubuntu (such as netselect-apt or Software Sources) do not
preserve the official security repository. This means that
users who have used these tools to find faster or more reli-
able mirrors are unlikely to use the security repository for
updates!

7.4 Verifying Mirrors
Many distributions use an automated mechanism to verify

that mirrors are staying up-to-date. While we did not at-
tempt to deviate from the correct, up-to-date status on our
mirrors, we posit that an attacker can determine the IP ad-
dress of the checking server and serve up-to-date content to
the checking server while serving malicious content to users
it is attacking. Note that this is trivial on distributions like
Fedora that allow a mirror administrator to selectively tar-
get users, because the only references coming from outside
the targeted range should be the checking server. It is pub-
licly acknowledged by some distributions [13] that detecting
and tricking these bots is trivial and so we do not feel this
is a viable security mechanism.

7.5 HTTPS
Red Hat Enterprise Linux (RHEL) and SUSE Linux En-

terprise are the only distributions that we found which widely
support or use HTTPS. When investigating how YUM uses
HTTPS, we discovered it does not validate SSL certificates.
This means that while the communication uses HTTPS,
there is no validation that the endpoint YUM communicates
with is correct (allowing a man-in-the-middle to pose as the
repository).

However, the Red Hat security team informed us that
on RHEL, YUM communicates with the Red Hat Network

servers using a special plug-in instead. During our discus-
sion with the Red Hat security team, they realized there
were issues in how SSL was used in the plug-in as well and
began working on a fix for it.

7.6 Comparison
We examine the additional security mechanisms provided

by different distributions and comment on their effectiveness
against attack.

• SUSE Linux Enterprise doesn’t use mirrors hosted by
outside parties and uses HTTPS so it is not vulnerable
to the attacks described in this paper.

• OpenSUSE, by using a download redirector, provides
significant protection from malicious mirrors. How-
ever, any other attacker, such as a man-in-the-middle,
that can respond to client requests can perform replay
or freeze attacks. If the download redirector fails or
is unreachable (e.g. due to a denial-of-service attack),
users cannot get updates but are not at risk of replay
attacks. Despite the download redirector protecting
users from replay or freeze attacks from malicious mir-
rors, users are still vulnerable to endless data attacks
from mirrors.

• Ubuntu and Debian have similar security to openSUSE
with the additional problem that if the security repos-
itory fails, they become vulnerable to replay or freeze
attacks from mirrors.

• Red Hat Enterprise Linux is not at risk from malicious
mirrors (since it uses no mirrors hosted by outside par-
ties) but is vulnerable to man-in-the-middle attackers
because of flaws in their HTTPS implementation. A
malicious party who can act as a man-in-the-middle
can launch any of the attacks that YUM is vulnerable
to.

• With a man-in-the-middle attacker, CentOS is vulner-
able to every attack (much like RHEL). In the case
of a malicious mirror, their download redirector makes
it more difficult to launch attacks that require the at-
tacker to provide a snapshot of packages (like a replay
or freeze attack), but the potential for abuse from end-
less data and extraneous dependencies attacks is still
large.

• Fedora has the same vulnerabilities as CentOS but
with the additional problem that an attacker can tar-
get attacks to a specific IP range. This also allows an
attacker to launch attacks that require the attacker to
provide a snapshot of the repository.

• Other distributions such as Gentoo, Mandriva, Lin-
uxMint, Sabayon Linux, Slackware, KNOPPIX, and
MEPIS Linux do not significantly alter the protection
provided by their package manager.

8. RESULTS
To understand the impact of an attacker that controls

a mirror, a trace of package requests was conducted on a
CentOS mirror and used to estimate the number of clients
that could be compromised or crashed by an attacker. For all
of the popular distributions our mirror could have launched

 0

20000

40000

60000

80000

100000

120000

140000

160000

 0 50 100 150 200 250 300
 0

 1000

 2000

 3000

 4000

 5000

 6000
C

um
ul

at
iv

e
P

ac
ka

ge
 R

eq
ue

st
s

C
um

ul
at

iv
e

U
ni

qu
e

IP
s

Time (in hours)

Package Requests
Unique IPs

Figure 4: CentOS Mirror Traffic. This figure
presents the cumulative package downloads and re-
quests from unique IP addresses for the CentOS mir-
ror over a 13 day period.

an endless data attack to crash all of the clients that visited
it. The number of unique IP addresses that contacted our
mirror represents an upper bound on the number of clients
that could be crashed each week.

8.1 Mirror Traces
The CentOS mirror was chosen for this analysis because

it was the longest mirror experiment that was conducted,
lasting 13 days. The package access trace gathered from
the CentOS mirror is shown in Figure 4. The number of
package requests and number of requests from unique IP
addresses increase roughly linearly over this time period.
Assuming the CentOS user base is not growing faster than
our mirror serves clients, we would expect the number of
unique IP addresses to flatten out over time, however our
trace is not long enough to capture that effect. Since clients
are counted as unique by IP address, multiple clients behind
a NAT box or proxy are counted as a single client. There are
many instances where a single IP address has several orders
of magnitude more package requests than the median client,
often with many requests for the same package. This implies
that clients are using NAT boxes or proxies in practice.

The openSUSE and Fedora mirrors (not shown) had sim-
ilar traffic effects as the CentOS mirror. The Debian and
Ubuntu mirrors (not shown) were both up for only a short
period, but did not demonstrate this effect. We suspect
this is because they do not automatically distribute requests
among the mirrors, instead requiring manual selection by a
user or the use of a tool like netselect-apt. Since our mir-
rors were only listed a few days, they did not attract a large
number of Debian or Ubuntu users.

8.2 Package Versions and Vulnerability
To perform our analysis, we needed to know the distri-

bution of package versions over time on the mirror, as well
as which of those versions are vulnerable to attack. Infor-
mation about the 58165 versions of the 3020 RPM CentOS
packages used in the last year was captured. The update
times were captured and used in the data set to determine if
different versions existed on the main repository at the same
time. This information was used to estimate compromises

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

C
lie

nt
s

C
om

pr
om

is
ed

Time (in hours)

Arbitrary
Mismatched

Snapshot

Figure 5: Compromised Clients CDF. This figure
presents the cumulative number of clients compro-
mised over a 13 day period for an attacker with 25
vulnerable versions. This figure shows the effect of
the security mechanism on the number of clients
compromised.

for those package managers that require a snapshot (pack-
ages that were all on a repository during the same time
period).

Determining which package versions are remotely vulner-
able to attack proved to be difficult and we are unaware of
a data set that provides a good model of this. To compen-
sate, we randomly chose a set of vulnerable versions from
all non-current versions of packages. In practice, we believe
that an attacker would be more likely to work to discover
vulnerabilities in old versions of popular packages as these
would allow the attacker to compromise more clients. This
work does not capture this effect.

A client that uses a mirror with a package manager that
has missing or inadequate security (Pacman, Slaktool, ports,
YUM, and urpmi) is considered compromised whenever they
install a package from the mirror. A client that uses a pack-
age manager that allows an attacker to mismatch vulner-
able package versions (Portage) is considered compromised
when it installs any package with a known vulnerability. For
clients with snapshot vulnerability to replay and freeze at-
tacks (Stork, APT, YaST, APT-RPM), the attacker chooses
a snapshot time and can compromise clients who install a
package that the attacker has a vulnerable version that was
current at that time. We defer details of how the attacker
chooses the snapshot time to a tech report [5].

Replay attacks only impact clients that are installing new
packages instead of those that are updating existing pack-
ages. From the mirror’s request log, it isn’t possible to de-
termine whether a client is installing or updating a package.
This means the results for Portage, Stork, APT, APT-RPM,
and YaST represent an upper bound. The package managers
without security (Slaktool, ports, Pacman) are not impacted
because an attacker can create arbitrary packages. Similarly,
the results for YUM and urpmi are accurate because as long
as there exists a vulnerable package the client hasn’t updated
to a newer version, an extraneous dependencies attack can
compromise the client.

8.3 Number of Compromised Clients

Using the CentOS trace and version information, the num-
ber of clients compromised by a malicious mirror was esti-
mated (Figure 5). Note that this estimation doesn’t take
into account the security practices of the distribution. As
described in Section 7.6, users from distributions with ad-
ditional security practices may be safer than what is de-
scribed here. We provide information about the security
of the package manager because many of the smaller dis-
tributions reuse package managers for more popular distri-
butions and use only the security mechanisms provided by
their package manager.

As the true number of vulnerable packages is not known,
we use a value of 25 vulnerable packages (the effect of vary-
ing the number of vulnerable packages is shown in Figure 6).
These plots show that the security model of the package
manager has a great impact on the number of clients that
can be compromised. A client that restricts attackers to mis-
matched vulnerable package versions reduces the maximum
estimated number of compromised clients by about a factor
of 4 to around 900 over the 13 day period. Package man-
agers whose security mechanisms require a snapshot reduce
the maximum estimated number of clients compromised to
under 500. A package manager with signatures on the root
metadata and protection against replay and freeze attacks
(for example, modified Stork) will not have any compromises
from an attacker that controls a mirror.

The package managers that allow the attacker to mis-
match packages or that require a snapshot vary based upon
the number of vulnerable packages. The effect of varying
the number of vulnerabilities is shown in Figure 6. The
number of packages with vulnerabilities that the attacker
can exploit is on the x-axis. The plots show that package
managers that allow an attacker to choose different versions
of packages that existed on the root repository at different
times (mismatch) are more vulnerable than package man-
agers that require a snapshot.

This figure clearly shows that a package manager that
requires an attacker to present a consistent set of packages
provides better security than one that allows an attacker to
mismatch packages. Somewhat disturbing is the significant
number of clients that can be compromised if there are only
5 vulnerable package versions.

Our leased server was bandwidth-limited and mirrored
multiple distributions simultaneously for cost reasons. An
attacker would likely expend more bandwidth or set up mul-
tiple mirrors to capture additional traffic, thus leading to
more compromises.

9. DISCLOSURE AND DISCUSSION
After disclosing these vulnerabilities to package manager

developers via Ryan Giobbi at CERT [12], we were contacted
by proactive developers at Gentoo and openSUSE who con-
firmed our findings and began working on fixes [14]. We
were also able to get in touch with developers at CentOS,
Red Hat, Fedora, Ubuntu, and Debian and had confirma-
tion and discussion about how we recommend they fix the
issues we uncovered [10]. We believe that most of the other
distributions will follow suit and either patch the vulnera-
bilities themselves or ask their package manager developer
to do so. In the interim, we provide some suggestions about
how distributions and users can increase their security:

• If the package manager supports HTTPS and it cor-

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40 45 50

C
lie

nt
s

C
om

pr
om

is
ed

 p
er

 W
ee

k

Vulnerable Packages

Mismatch
Snapshot

Figure 6: Clients Compromised Per Week. This fig-
ure presents the estimated number of clients com-
promised per week by an attacker that controls a
mirror. The error bars show one standard devia-
tion. The plots are offset slightly for readability.

rectly checks certificates, the distribution can set up
repositories or mirrors that support HTTPS transfers.
This will not protect against a malicious mirror, but
will prevent a man-in-the-middle attack from an out-
sider.

• The distribution can review their mirror policy care-
fully and validate administrator credentials before putting
a mirror on the official mirror list. The distribution
should also review their policies for deciding how mir-
rors are allocated traffic to prevent a mirror from being
able to target attacks (perhaps indirectly by advertis-
ing high bandwidth).

• The distribution’s mirrors should use a secure connec-
tion (e.g. SSH) to synchronize with the main repos-
itory to prevent an attacker from impersonating the
main repository.

• Users should check that the versions of the packages
their package manager recommends for installation are
recent through multiple sources.

10. RELATED WORK
Many package managers have GUI front-ends [15, 27].

These GUI-based tools are usually just a different interface
to the functionality provided by a command line package
manager and so are identical from a security standpoint.

There are many techniques that help to support software
security such as systems that ensure the authenticity and
integrity of software (including SFS-RO [16], SUNDR [17],
Deployme [20], and Self-Signed Executables [30]), and code
signing certificates [6]. These are complimentary to the so-
lutions presented in this paper.

There are several systems that access multiple mirrors
to improve download performance and avoid DoS attacks.
Byers et al. [4] describe using Tornado codes to improve
performance by downloading from several mirrors simulta-
neously. This has the side-effect of allowing the client to
make progress even if one of the mirror misbehaves. Sharma
et al. [24] describe having the client “hop” between mirrors

while downloading a file. This prevents an attacker from
launching a DoS attack on the client because the attacker
does not know which mirror the client will use next. We
hope that raised awareness will result in organizations try-
ing these techniques in practice.

11. CONCLUSION
This work identifies security issues in ten popular pack-

age managers in use today. Furthermore, we demonstrate
that while some security mechanisms used by distributions
may help to prevent attacks, others may actually decrease
security. We estimate that when ignoring any additional se-
curity mechanisms, an attacker with a mirror that costs $50
per week can compromise between 150 and 1500 clients each
week. These security issues have been disclosed to distribu-
tions that are currently working to fix these problems.

12. ACKNOWLEDGMENTS
We would like to thank our shepherd Steven Murdoch

and the anonymous reviewers for their insightful comments
and feedback. We would like to thank Ryan Giobbi at the
CERT for helping us to responsibly disclose these issues to
the package manager maintainers. We would like to thank
Jake Edge, Dag Wieers, Kees Cook, Jan iankko Lieskovsky,
Robin Johnson, Ludwig Nussel, Peter Poeml, Marcus Meiss-
ner, Josh Bressers, Tomas Hoger, Jason Gunthorpe, Kyri-
cos Pavlou, Mike Piatek, Chris Gniady, Wenjun Hu, and
Tadayoshi Kohno for their comments on our research. We
would also like to thank the members of the Stork project for
their help in creating Stork and their input on this research.
This work was funded in part by the PlanetLab Consortium.

13. REFERENCES
[1] Debian APT tool ported to Red Hat Linux.

http://www.apt-get.org/.

[2] APT-RPM. http://apt-rpm.org/.

[3] Arch Linux (Don’t Panic) Installation Guide.
http://www.archlinux.org/static/docs/

arch-install-guide.txt.

[4] J. Byers, M. Luby, and M. Mitzenmacher. Accessing
multiple mirror sites in parallel: using Tornado codes
tospeed up downloads. INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, 1, 1999.

[5] J. Cappos, J. Samuel, S. Baker, and J. Hartman. A
Look In the Mirror: Attacks on Package Managers.
Technical Report TR–08–06, Department of Computer
Science, University of Arizona, Jul 2008.

[6] Introduction to Code Signing. http://msdn2.
microsoft.com/en-us/library/ms537361.aspx.

[7] A. Crooks. The netbsd update system. In ATEC ’04:
Proceedings of the USENIX Annual Technical
Conference, pages 17–17, Berkeley, CA, USA, 2004.
USENIX Association.

[8] debsigs - What is debsigs. http:
//linux.about.com/cs/linux101/g/debsigs.htm.

[9] DistroWatch.com: Editorial: How Popular is a
Distribution? http://distrowatch.com/weekly.php?

issue=20070827#feature.

[10] M. Domsch. Re: YUM security issues...
https://www.redhat.com/archives/

fedora-infrastructure-list/2008-July/m%

sg00114.html.

[11] man dpkg-sig.
http://pwet.fr/man/linux/commandes/dpkg_sig.

[12] R. Giobbi. Vulnerability Analysis Blog: Safely Using
Package Managers. http://www.cert.org/blogs/
vuls/2008/07/using_package_managers.html.

[13] J. Hughes. HughesJR.com – Attacks on Package
Managers – ummm...
http://www.hughesjr.com/content/view/22/1/.

[14] R. H. Johnson. [gentoo] Index of
/users/robbat2/tree-signing-gleps.
http://viewcvs.gentoo.org/viewcvs.py/gentoo/

users/robbat2/tree-signing%-gleps/.

[15] The KPackage Handbook. http://docs.kde.org/
development/en/kdeadmin/kpackage/.

[16] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file
system security. In Proc. 17th SOSP, pages 124–139,
Kiawah Island Resort, SC, Dec 1999.

[17] D. Mazières and D. Shasha. Building secure file
systems out of Byzantine storage. In PODC ’02:
Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 108–117,
New York, NY, USA, 2002. ACM.

[18] milw0rm - exploits : vulnerabilities : videos : papers :
shellcode. http://www.milw0rm.com.

[19] Netcraft: Strong growth for Debian.
http://news.netcraft.com/archives/2005/12/05/

strong_growth_for_debian.%html.

[20] K. Oppenheim and P. McCormick. Deployme:
Tellme’s Package Management and Deployment
System. In Proc. 14th Systems Administration
Conference (LISA ’00), pages 187–196, New Orleans,
LA, Dec 2000.

[21] Gentoo-Portage. http://gentoo-portage.com/.

[22] Installing Applications: Packages and Ports.
http://www.freebsd.org/doc/en_US.ISO8859-1/

books/handbook/ports.html.

[23] RPM Package Manager. http://www.rpm.org/.

[24] P. Sharma, P. Shah, and S. Bhattacharya. Mirror
hopping approach for selective denial of service
prevention. Object-Oriented Real-Time Dependable
Systems, 2003.(WORDS 2003). Proceedings of the
Eighth International Workshop on, pages 200–208,
2003.

[25] Slackware Package Management. http:
//www.slacksite.com/slackware/packages.html.

[26] Stork. http://www.cs.arizona.edu/stork.

[27] Synaptic Package Manager - Home.
http://www.nongnu.org/synaptic/.

[28] URPMI. http://www.urpmi.org/.

[29] dkpg-sig support wanted?
http://nixforums.org/about101637-asc-15.html.

[30] G. Wurster and P. van Oorschot. Self-Signed
Executables: Restricting Replacement of Program
Binaries by Malware. In 2nd USENIX Workshop on
Hot Topics in Security, Boston, MA, Aug 2007.

[31] YaST - openSuSE. http://en.opensuse.org/YaST.

[32] Yum: Yellow Dog Updater Modified.
http://linux.duke.edu/projects/yum/.

